Skip navigation

Integralberäkning med mittpunktsmetoden med programmering

Ma 4 - Derivator och integraler - Med TI-Nspire kan du göra beräkningar med integraler, både exakt och numeriskt.

Publisher: Texas Instruments Sverige

Author: TI Sweden

Område:  Mathematics, STEM

Labels: Area, Coding, Curriculum, Derivative, Exercise, Graphing, Integral calculus, Number, Programming, STEM

Applications in the Classroom

Graphing Calculator Software Applications (APPS) are pieces of software that can be downloaded onto a TI graphing calculator as you would add software to a computer to enhance its capabilit…

Publisher: T³ Europe

Editor: Koen Stulens

Author: Serge Etienne, Hildegard Urban-Woldron, Martin van Reeuwijk, T³ Europe

Område:  Mathematics, STEM

Labels: Algebra, Analysis, Animations, Calculus, Data collection, Dynamic Simulations, Finance, Inequalities, Cones, Spreadsheets, Area

Arean av en viss rektangel

Ma 3 - Derivator och integralbegreppet - Undersöker i denna övning hur en rektangels area varierar

Author: Texas Instruments Sverige

Område:  Mathematics

Labels: Area, Computer Algebra, Curriculum, Derivative, Exercise, Integral calculus

Vika en A4

Ma 3c - Derivator och integralbegrepp | Här viker man ett A4-papper till en triangel och undersöker hur arean ändras beroende av läget av det nedvikta hörnet.

Author: Texas Instruments Sverige

Område:  Mathematics

Labels: Area, Curriculum, Derivative, Exercise, Integral calculus, Triangle

Potensfunktioner och kvoten mellan två areor

Ma 3 - Derivator och integraler | I en serie av övningar skall du studera hur kvoten av två areor inneslutna av två linjer och en potensfunktion.

Author: Texas Instruments Sverige

Område:  Mathematics

Labels: Exam, Area, Data collection, Computer Algebra, Tips and tricks, Curriculum, Derivative, Integral calculus

Att inhägna ett rektangulärt område

Ma 2 - Linjära och icke linjära modeller | Du vill göra inhägnaden rektangelformad.

Author: Texas Instruments Sverige

Område:  Mathematics

Labels: Area, Curriculum, Functions, Linear Functions


Ma 3 - Samband och förändring, Vik ett A4 papper

Author: Texas Instruments Sverige

Område:  Mathematics

Labels: Area, Computer Algebra, Experiment, Geometry, Triangle

A Lunar Ellipse

Students consider the question "What is the shape of the curve forming the terminator of the crescent moon?" They then calculate the area of the crescent and graph its variation over one m…

Author: Ian Galloway

Område:  STEM

Labels: 3D Geometry, Coding, Algebra, Randomness, Angles, STEM, Area, T3, Ellipse, TI-Innovator, Frequency, Modelling, Physics, Sine

Estimating fractional areas

An activity to help students think about and appreciate simple fractions.

Author: David J C Elgin

Labels: Fractions, Percentages, Area

Fraction Diagrams

Assistance to understand fractions.

Author: David J C Elgin

Labels: Fractions, Area

Volumes of prisms

The volume of a number of different prisms are found in this unit.

Author: David J C Elgin

Labels: Area, Surface area, Volume

Areas of quadrilaterals and polygons

The areas of quadrilaterals, n sided shapes and regular polygons are found using the trig area formula.

Author: David J C Elgin

Labels: Area, Trigonometry


Students are expected to work out the cost of carpeting a room using different carpet kinds and adding VAT to the bill.

Author: David J C Elgin

Labels: Area, Percentages

Circle Area Formula

Supports the conceptual understanding of where the formula A=π*r² comes from.

Author: Nevil Hopley

Område:  Mathematics

Labels: Circle theorems, Area

Barn and pen problem

A simple version of the maximum-area problem for younger students

Author: Barrie Galpin

Labels: Area

The sheep-pen problem

Recognise a quadratic in a realistic context and solve an optimisation problem

Author: Barrie Galpin

Labels: Quadratic, Perimeter, Area, Algebra

The arbelos

Investigate relationships between radii of the semicircles and the perimeter and area of this interesting shape

Author: Barrie Galpin

Labels: Perimeter, Area, Circles

Dimensions of a Circle

Derive the formulae for the circumference and area of a circle using multiple representations.

Author: Barrie Galpin

Labels: Circumference, Area, Circles