Coût total, coût marginal et bénéfice

TI-82 Advanced Edition Python

TI-83 Premium CE Edition Python

Enoncé

Une usine française assure la fabrication chaque semaine d'une quantité q en tonnes de produits chimiques. Elle produit entre 10 et 100 tonnes par semaine. Le coût total de q tonnes est donné par la fonction C définie sur $[10\,;100]$ par $C(q)=3q^2+40q+2700$. La fonction C_M représentant le coût moyen unitaire est définie par $C_M(q)=\frac{C(q)}{q}$: c'est le coût moyen d'une tonne de produit lorsque q tonnes sont produites.

- 1. a. Montrer que $C_M'(q) = \frac{3(q-30)(q+30)}{q^2}$ pour tout réel $q \in [10;100]$.
- b. Dresser le tableau de variations de la fonction \mathcal{C}_{M} . Quel est le coût moyen unitaire minimal ?
- 2. Le coût marginal C_m est défini comme étant le supplément de coût engendré par la production d'une tonne de produit supplémentaire, soit $C_m(q) = C(q+1) C(q)$.
 - a. Calculer $C_m(q)$ et interpréter le résultat. Exprimer $C_m(q)$ en fonction de q pour tout réel $q \in [10; 100]$.
 - b. Déterminer $\mathcal{C}'(q)$. Quelle est la différence entre $\mathcal{C}_m(q)$ et $\mathcal{C}'(q)$?
- 3. On souhaite comparer le coût marginal et le coût unitaire moyen. Représenter ces 2 fonctions dans un même repère et étudier leur point d'intersection. Conclure.
- 4. Le cours du marché offre un prix de 310 \in par tonne fabriquée. Pour tout $q \in [10;100]$, on note R(q) la recette et B(q) le bénéfice générés par la production et la vente de q tonnes de produits chimiques par l'usine.
 - a. Exprimer R(q) et B(q) en fonction de q.
 - b. Quel est le nombre de tonnes de produits chimiques à produire par l'usine pour réaliser un bénéfice maximal ?

1.a. Dérivée du coût moyen unitaire

On a
$$C_M(q) = \frac{3q^2 + 40q + 2700}{q} = 3q + 40 + \frac{2700}{q}$$
 avec $10 \le q \le 100$. Donc $C_M'(q) = 3 - \frac{2700}{q^2} = \frac{3q^2 - 2700}{q^2} = \frac{3(q^2 - 900)}{q^2} = \frac{3(q - 30)(q + 30)}{q^2}$ pour $10 \le q \le 100$.

1.b. Coût moyen unitaire minimal

On en déduit que $C'_M(q)$ est du signe de (q-30) sur [10;100] puis le tableau de variations de la fonction C_M sur [10;100]:

_	0 10011000101	10 00 1	CC 101101	.o o _{IVI}	- L - C	,, 200
	q	10		30		100
	$C_M'(q)$		_	0	+	
	$C_M(q)$	340		220	/	367

Le coût moyen unitaire minimal est égal à 220 €, il est obtenu pour une production de 30 tonnes de produits chimiques.

Crédit photo : www.pexels.com – Pixabay

X	Υı			
10	340			\neg
20	235			
30	228			
40	227.5			
50	244			
60	265			
70	288.57			
80	313.75			
90	340			
100	367			
110	394.55			

Coût total, coût marginal et bénéfice

TI-82 Advanced Edition Python TI-83 Premium CE Edition Python

2.a. Coût marginal

Tout d'abord $C_m(20) = C(21) - C(20) = 4863 - 4700 = 163$, cela signifie que la 21^{ème} tonne produite coûtera 163 €!

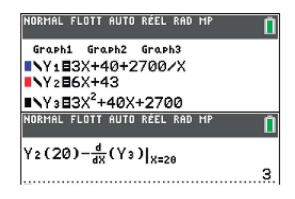
D'autre part $C_m(q) = C(q+1) - C(q)$ avec $C(q) = 3q^2 + 40q + 2700$ soit $C_m(q) = 6q + 43$ pour tout réel $q \in [10; 100]$.

2.b. Dérivée du coût total

On a C'(q) = 6q + 40, rajoutons alors dans le menu fonction ℓ de la calculatrice, la fonction ℓ en ℓ et la fonction ℓ en ℓ en ℓ et la fonction ℓ en ℓ en ℓ en ℓ en ℓ et la fonction ℓ en ℓ en

On calcule alors la différence $C_m(q)-C'(q)=6q+43-(6q+40)=3$ pour tout réel $q\in[10\,;100]$. Il y a une différence de seulement $3\in$ entre le coût marginal et la dérivée du coût total : en pratique, on assimile le coût marginal de production à la dérivée du coût total.

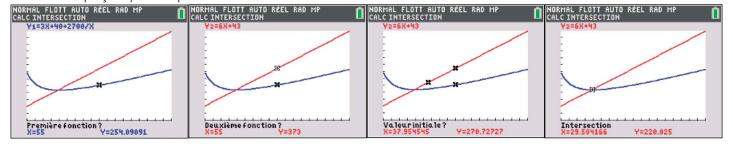
On vérifie ce résultat sur l'écran de calculs en utilisant le nombre dérivé d'une fonction accessible dans le menu math choix 8:nbreDérivé puis on complète tous les champs manquants: les fonctions Y_2 et Y_3 sont accessibles avec la touche var puis onglet VAR Y choix 1:Fonction.



3. Comparaison de fonctions

Après avoir représenté ces 2 fonctions dans un même repère, on sélectionne la commande 5:intersection dans le menu ado to tourne la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 5:intersection dans le menu ado tourne de la commande 6:intersection de la commande 6:interse

De retour au graphique, on valide le choix de Y_1 , celui de Y_2 et enfin la valeur initiale en se plaçant près du point d'intersection recherché.



On trouve $q \approx 29.5$ c'est-à-dire que le coût marginal et le coût unitaire se coupent très proche de la valeur minimisant le coût moyen unitaire.

4.a. Recette et bénéfice

On a R(q) = 310q et $B(q) = R(q) - C(q) = 310q - (3q^2 + 40q + 2700)$ soit $B(q) = -3q^2 + 270q - 2700$ pour tout $q \in [10; 100]$.

4.b. Bénéfice maximal

La fonction B est un polynôme du second degré dont l'abscisse du sommet S de la parabole est donné par la formule $-\frac{b}{2a}$. Ici on a $x_S = -\frac{270}{2\times(-3)} = 45$.

De plus, $y_S = B(45) = 3375$. L'usine réalise donc un bénéfice maximal hebdomadaire de 3 375 \in pour une production optimale de 45 tonnes de produits chimiques. Avec la calculatrice, on sélectionne la commande

4:maximum dans le menu calculs, obtenu à l'aide des touches 2nde trace.

